If it's not what You are looking for type in the equation solver your own equation and let us solve it.
((2x-10)(2x-10))+x^2=625
We move all terms to the left:
((2x-10)(2x-10))+x^2-(625)=0
We multiply parentheses ..
x^2+((+4x^2-20x-20x+100))-625=0
We calculate terms in parentheses: +((+4x^2-20x-20x+100)), so:We get rid of parentheses
(+4x^2-20x-20x+100)
We get rid of parentheses
4x^2-20x-20x+100
We add all the numbers together, and all the variables
4x^2-40x+100
Back to the equation:
+(4x^2-40x+100)
x^2+4x^2-40x+100-625=0
We add all the numbers together, and all the variables
5x^2-40x-525=0
a = 5; b = -40; c = -525;
Δ = b2-4ac
Δ = -402-4·5·(-525)
Δ = 12100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{12100}=110$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-110}{2*5}=\frac{-70}{10} =-7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+110}{2*5}=\frac{150}{10} =15 $
| 5x−12=-2+5(x−2) | | 13q+12-12q=19 | | F=9/5(n-99) | | (2x-10)^2+x^2=625 | | -4(1+2n)-3(6n-5)=-41 | | 2(2x-10)^2+x^2=625 | | 7t+10=-50 | | 40x-10=-130 | | -328=x-28-49x | | 6x-2/15-5x=17/15+8/15 | | 3r+4-1=-6 | | 0.7-y=1.34 | | 2/3|2x+1|-8=10 | | 14=-7t-50 | | 12x-20=1800 | | 0.0096x^2=0 | | 2/3|2x+1|=10 | | 5n-6-1=13 | | 7t+14=-50 | | 24=-2b-4b | | p+18=4 | | -6-6(2k+4)=8 | | 6p=3p+2p=p | | 8/9=y/54 | | 8-3(-1)=m | | X*12-293=x*2-13 | | -78=6p | | -5x/7-5=-6+2x/3 | | 1/5(x-30)=20 | | -18=9x9 | | (5x+2)=(2x-3) | | 32x-12-7=-115 |